Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.

نویسندگان

  • Kevin Murphy
  • Daniel Burke
  • Nicholas Devaney
  • Chris Dainty
چکیده

Laboratory experiments are carried out to detect optical vortices in conditions typical of those experienced when a laser beam is propagated through the atmosphere. A Spatial Light Modulator (SLM) is used to mimic atmospheric turbulence and a Shack-Hartmann wavefront sensor is utilised to measure the slopes of the wavefront surface. A matched filter algorithm determines the positions of the Shack-Hartmann spot centroids more robustly than a centroiding algorithm. The slope discrepancy is then obtained by taking the slopes measured by the wavefront sensor away from the slopes calculated from a least squares reconstruction of the phase. The slope discrepancy field is used as an input to the branch point potential method to find if a vortex is present, and if so to give its position and sign. The use of the slope discrepancy technique greatly improves the detection rate of the branch point potential method. This work shows the first time the branch point potential method has been used to detect optical vortices in an experimental setup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor.

In this paper we compare experimentally two methods of detecting optical vortices from Shack-Hartmann wavefront sensor (SHWFS) data, the vortex potential and the contour sum methods. The experimental setup uses a spatial light modulator (SLM) to generate turbulent fields with vortices. In the experiment, many fields are generated and detected by a SHWFS, and data is analysed by the two vortex d...

متن کامل

Detection of phase singularities with a Shack-Hartmann wavefront sensor.

While adaptive optical systems are able to remove moderate wavefront distortions in scintillated optical beams, phase singularities that appear in strongly scintillated beams can severely degrade the performance of such an adaptive optical system. Therefore the detection of these phase singularities is an important aspect of strong-scintillation adaptive optics. We investigate the detection of ...

متن کامل

Application of Shack-hartmann Wavefront Sensors to Optical System Calibration and Alignment

While Shack-Hartmann wavefront sensors are commonly used for adaptive optics, they have many other applications. The modern Shack-Hartmann wavefront sensor is compact, rugged, and insensitive to vibration, and has fully integrated data acquisition and analysis. Furthermore, even wavefronts of broadband sources that cannot normally be tested with interferometers can be measured with Shack-Hartma...

متن کامل

Advanced Methods for Improving the Efficiency of a Shack Hartmann Wavefront Sensor

Wavefront sensor is a device that measures the optical wavefront aberration. The Shack Hartmann wavefront sensor (SHWS), named after Johannes Franz Hartmann and Roland Shack, is one of the most often used optical wavefront sensor. It is made up of an array of microlenses (all having the same focal length and aperture size) and a detector placed at the focal plane of these microlenses. Johannes ...

متن کامل

Shack-Hartmann sensor improvement using optical binning.

We present a design improvement for a recently proposed type of Shack-Hartmann wavefront sensor that uses a cylindrical (lenticular) lenslet array. The improved sensor design uses optical binning and requires significantly fewer detector pixels than the corresponding conventional or cylindrical Shack-Hartmann sensor, and so detector readout noise causes less signal degradation. Additionally, de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 18 15  شماره 

صفحات  -

تاریخ انتشار 2010